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ABS"ffiACT ~~CI 

It is shown that Taylor's beampattern for a continuous aperture can be 
computed analytically without Fourier transforming the weighting function 
itself, thereby achieving economies in computational effort in some modeling 
situations. A short Fortran program is given. An approximate formula for the 
half-power beamwidth is derived. It is pointed out that the Taylor weighting 
function can be negative for large ii, a fact that does not seem to be well 
known. In addition, modification of Taylor's design to force the weighting 
function to go to zero as a power a of distance from the aperture endpoints is 
discussed. For a = 1 and a = 2 this results in an increase of 5% and 10%, 
respectively, in the beamwidth • 
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I. INTRODUCTION 

This Memorandum is a review of Taylor's original weighting function for 
continuous apertures. It is presented in some detail in Sections II and III. 
It is shown that Taylor's beampattern an9 weighting function can be computed 
easily by analytically exact formulas. Taylor's beampattern turns out to be 
the product of a rational function and the beampattern of a uniformly weighted 
aperture. 

Also reviewed is a modification due to Rhodes of Taylor's pattern for the 
purpose of forcing the weighting function to go zero as a power a of distance 
from the aperture endpoints. This results in a 5% increase in beamwidth over 
the beamwidth of Taylor's original pattern if a= 1, and a 10% increase if 
a= 2 (for~= 10; see below). These modifications are discussed in Section 
IV. 

Taylor's original paper [1] derives a symmetric weighting function for a 
continuous aperture. He does not discuss or even mention its use for arrays . 
of point sensors. His method is essentially an ad hoc, but intuitively 
sensible, procedure which blends together the desirable characteristics of 
uniform weighting and the van der Maas weighting into one weighting design. 
The blending is accomplished by careful specification of the beampattern 
nulls. The various sidelobe levels do not enter the method's derivation. In 
other words, the sidelobes are whatever they turn out to be after 
specification of the nulls. 

It is often said that Taylor weighting makes the first few sidelobes near 
the mainlobe nearly flat; that is, all 11 near-in 11 sidelobes have essentially 
the same amplitude. This statement is erroneous. See Figure 1, for example, 
where the 9 sidelobes (n = 10) nearest the mainlobe would all be at -20 dB if 
the statement were true. Instead, the first sidelobe is at -20 dB and the 
ninth sidelobe is at (roughly) -25 dB. 

It is a useful fact that the beampattern corresponding to Taylor 
weighting can be computed analytically, without Fourier transforming the 
weighting function. This can be seen from Taylor's original discussion [1 ] , 
which is reviewed in this Memorandum. Taylor's original notation is retained 
here. Appendix A gives a FORTRAN program which computes the beampattern 
and/or the weighting function using the analytical formulas developed below. 
In addition, it computes the exact half-power beamwidth. 

The aperture is assumed to lie on the p-interval from -v to +v. The 
weighting function g(p} is related to the far-field beampattern F(z) by 

n . 
F ( z) = J g ( p) e 1 zp d p. 

-n 

(1) 

Taylor assumes throughout that g(p} is a real even function. 
F(z) is also an even function of z. 

Consequently, 

It is well known that 

5 
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co 

( ) ~ ( ) (sin 'll'(z-m) + sin 'll'(z+m)) 
F z = 21T ~ em F m 1T(z-m) 'll'(z+m) 

where eo = 1 and em = 2 for m > 1. In other words, knowledge of the 
integer samples of F(z) implies knowledge of F{z) everywhere. A very 
different representation of F(z) is the infinite product 

co 2 

F(z) = 1T ( 1 -7) 
n=1 n 

( 2) 

( 3) 

where {Zl, z2, ···} is a complete list of all the positive zeros of F(z). 
It is an interesting mathematical fact that these zeros must all lie on the 
real z-axis. For example, uniform weighting g{p) = 1/(21T) gives 

F(z) sin nz , 
= 

'lfZ 

whose positive nulls are {1,2,3, •••• } From (3), then, 

00 

sin nz = 7T (1 _ ~), 
wz n = 1 n£: 

( 4) 

a well known identity dating back at least to Euler•s time (circa 1750). 

By means of his choice of nulls {Zn } in the representation (3) of F(z), 
Taylor sought a beampattern which had a flat envelope near the mainbeam and, 
for large z, an asymptotic 6 dB/octave decay rate. He also sought by this 
same means a physically realizable aperture to approximate the physically 
unrealizable ideal van der Maas function. (It is unrealizable because of the 
presence of delta function spikes at the aperture end-points~p = ± n.) Taylor 
found a set of nulls which came close to attaining his first objective and 
which did attain his second objective. The next section is a description of 
Taylor• s nulls. 

II. TAYLOR•S NULL SPECIFICATION 

Taylor specifies the nulls z0 of his beampattern, startin~ with n = n, 
to be exactly the same as those at the uniform weighting funct1on; that is, 

for n = n, n + 1, ••• {5) 

The positive integer n is a free parameter which can be chosen as desired. 
Note that n = 1 gives exactly uniform shading. Note also that the null list 
(5) guarantees a 6 dB/octave asymptotic decay rate as z~ oo • (This follows 
from (8) below.) 

7 
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To complete the list of positive nulls for his beampattern, Taylor 
selects (when n > 1) the 11 near-in 11 nulls to be 

where -
a = ri I ~A2 + (ri - i> 2 

A = l1n (R + ~R2 - 1) 
11' 

R = lOISP/20 

for n = 1,2, 

S =maximum sidelobe level (in dB). 

••• , n - 1, ( 6) 

This choice for the first n-1 nulls may seem mysterious at first glance, but 
it is a choice based on the ideal van der Maas function [2], defined by 

F0(z, A) . = cos tr~, A>O. 

It is an interesting mathematical fact that among all beampattern functions 
F(z) such that 

(a) F(z) has a Fourier transform vanishing outside the aperture -11' to +n 

(b) I F ( z) I~ 1 for I z I ~ A, 

the one with the maximum possible value at z=O is the van der Maas function 
F(z) = Fo(z,A) . The positive nulls of Fo(z,A) are 

.. I 2. 1 2 
zn = fA + (n - 2) , n = 1, 2, 3, 

Comparison of these nulls with Taylor's ad hoc null specification (b) shows 
that Taylor's nulls are related to the van der Maas nulls by a dilation factor 
a. The factor a is chosen to be slightly larger than unity to compensate for 
the 6 dB/octave decay of the beampattern for z > n. Note that n = oo gives 
exactly the van der Maas beampattern. -

III •. TAYLOR'S BEAMPATTERN AND WEIGHTING FUNCTION. 

Taylor's beampattern can now be expressed, using (3), as 

(7) 

8 
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The last expression in (7) can be rewritten, using (4), to give 

( 8) 

F(z) 

In this expression, limits must be taken whenever z = 0, 1, 2, 3, ••• , n-1 to 
avoid the indeterminate form 0/0. See Appendix B. Note that Taylor•s · 
beampattern is identically the product of a rational function (of degreen-1 
in z2) and the beampattern of the uniformly weighted aperture, sin(nz)/nz. 

It is clear that Taylor•s beampattern can be computed analytically from 
(8) without computing the weighting function at all. The representation (2) 
of F ( z) is 

F(z) = 2n F(m) (sin n (z-m) +sin n(z+m)) 
n(z-m) n(z+m) (9) 

since F(n) = 0 for n > n. This is not as efficient as using (8). However, it 
does yield an efficient way to compute the weighting function ~(p). By 
Fourier transforming it term by term and using the fact that F{m) = F(""'i'l), we 
get · 

1 { n-1 } 
g(p) = 2. F(O) + 2 ~ F(m) cos mp ,jpj.s_ • ( 10) 

This is the (spatial) Fourier series of Taylor•s weighting function. By 
computing once and for all the constants F(O), F(1), ••• , F(n-1) using (8), 
the series (9) can be an efficient formula for computation. 

The beamwidth measured between the first nulls is (from (6) with n=1) 

_r;-;-
BWNULL = 2al'A- + 1 

where a and A are given as above. An exact formula for the half-power 
beamwidth is not available. Table 2 gives half-power beamwidths that were 
computed numerically (using a general purpose subroutine in [3, Chapter 7] ). 
More useful perhaps is the following approximate formula for the half-power 
beamwidth 

9 
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-1/2 2 
1f + 1 
T2 2 

To prove (11), note that the asymptotic expansion 

-
00 

+ ~1 z2 0 LJ -;;'l , z~ 

follows immediately from (7). Since 

()() 00 n-1 n-1 

2:~ = L~ -L\ = t- -L: n n n n=W n=1 n=1 n=1 

we have 

n=n 

1 
2' n 

F(z) - 1 - t + f?, f- 1 
2 - ~ \ z

2 
, H o . 

~~2 (A2 + (n- }> ) n} . 
Setting F(z) = 1/2 and solving for z gives (11). 

The accuracy of (11) is good in two limiting cases. As n~~, a~ 1 

and (11) becomes 

00 

BW3dB ~ 
-1/2 1 

2 1 2 
A + (n - 2> 

The exact answer for the van der Maas function is 

BW3dB = 2 !A
2 

- (~ arc cosh <{ cosh .A) y 112 

( 11} • 

(12) 

and a comparison with (12) is given in the last row in Table 3. Similarly, 
for n = 1, the sum in (11) vanishes and 

BW3dB ~ 2 '[! = 1.103 radians 

10 
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which is within 10 percent of the correct answer of BW3dB = 1.207 radians 
for the uniformly weighted aperture. 

Table 3 gives the relative error between the approximation (11) and the 
exact half-power beamwidth for the same entries as in Table 2. It may be 
concluded from Table 3 that 

(a) the approximation (11) is always on the low side of the exact 
half-power beamwidth, and 

(b) the correction required to make (11) exact is a constant factor 
which depends strongly on the specified sidelobe level and very 
weakly on n. 

Consequently, a suitable correction factor depending only on specified 
sidelobe level would make (11) very accurate. 

The Taylor weighting function need not always be a positive function. 
The best way to show this is by example. Consider the case n = 100 and a 
sidelobe level of S = -20 dB. The weighting function is slightly negative 
just inside the aperture endpoints (for p =~3.078761, for example, Taylor's 
weight is -.005519929). See Figure 2. The Taylor function in practice is 
nearly always positive for smaller values of n. 
n -10d8 (A = .578) - -20dB (A= • 953) -30d8 (A= 1. 32) -40dB 

5 1.0475 1. 3264 1. 5526 1. 7323 
10 1.0009 1.2818 1. 5220 1. 7262 
15 .9851 1.2641 1.5051 1. 7126 
20 • 9771 1.2548 1. 4954 1. 7036 
25 .9724 1.2491 1.4892 1. 6975 
30 • 9692 1. 2452 1.4849 1. 6932 
100 • 9581 1. 2313 1.4691 1. 6761 
00 • 9533 1.2252 1. 4619 1.6680 

Table 2. Exact Taylor ha 1 f-power beamwi dths 

(A=l. 69) 

i'i -10d8 {A=.578 -20dB {A=i953} -30d8 (A=l. 32} -40dB (A=l. 69} 

5 7. 67% 9.98 % 11.4 % 12.2% 
10 7. 57 % 9. 91 % 11.3 % 12. 2% 
15 7. 55 % 9.90 % 11.3 % 12.2 % 
20 7. 54 % 9.89 % 11.3 % 12.2 % 
25 7. 55 % 9.89 % 11.3 % 12.2 % 
30 7. 54 % 9.89 % 11.3 % 12.2 % 
100 7. 55 % 9.88 % 11.3 % 12.1 % 
00 7. 54 % 9.88 % 11.3 % 12.1 % 

Table 3. Relative error of approximation ( 11) to 
Taylor half-power beamwidths. 

11 
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IV. MODIFICATIONS OF TAYLOR WEIGHTING 

Rhodes [4,5] shows that the Taylor weighting function g(p) can be made to 
go to zero as any power a > -1 of distance from the aperture endpoints by 
altering the position of the nulls in Taylor's function F(z). The general 
design technique can be viewed as an extension of certain ideas in Taylor's 
original paper [1], using mathematical methods developed by Rhodes. The most 
important cases are 

1. a = 0, which is exactly Taylor's original case; F(z) decays 
asymptotically at 6 dB per octave. 

2. a = 1, for which the weighting function goes to zero linearly at the 
aperture endpoints; F(z) decays asymptotically at 12 dB per octave • 

3. a= 2, for which the weighting function goes to zero quadratically at 
the aperture endpoints; F(z) decays asymptotically at 18 dB per octave. 

The cases a= 1 and a= 2 are given explicitly below, after giving the method 
for any a > -1. 

A theoretically significant criticism of Rhodes• work is that he does not 
prove that his technique is mathematically correct. The available theory (due 
to Paley and Wiener, and to Levinson) provides a proof only for -1/2 < a< 1/2 
and a=l. As Rhodes states [5], 11 it is not unreasonable to expect that the 
genera 1 theory 11 is va 1 id for a 11 a > -1. In any event, we can proceed to 
develop the method for all a > -1 in a purely formal way, ignoring a 
theoretical question which may in the end not be of any practical importance. 
Taylor's original method is, after all, an ad hoc technique and so- is Rhodes• 
generalization of it. 

Rhodes' development retains the integer n as the breakpoint between the 
near-in nulls, which are dilated versions of van der Maas• nulls, and the 
outer nulls, which force the asymptotic decay rate for F(z) to be 6(1+ a) dB 
per octave. Consequently, in the limit as n~oo, the van der Maas function is 
again obtained for all a > -1, just as in Taylor's original design a = 0. 
This means that the desired behavior of the weighting function at the aperture 
endpoints is confined to small neighborhoods of the aperture endpoints for 
larger n. In other words, the weighting function changes rapidly just inside 
the aperture endpoints for large n. 

The development in [4] is brief and only the case a = 1 is given in any 
detail. His later paper [5] gives enough detail to carry out the general 
development for a> -1. This requires the identity, valid for a> -1, 

00 

= -rr ~ _ z
2 )= r2 (1 + a/ 2) rfz + 1- a/2~ sin w(z- a/2) 

[ / 2 r z + 1 + a/2 w( z - a/2) 
n=1 (n + ~) _ 

T ( z) 
a 

It is proved as follows. A special case (z1 = z2 =' a/2 and z3 = z) of a 
result in [6, Equ. 1.3(4)] gives 

( 13) 

13 
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r(z + a/2 r (-z + a/2) = Tr A- l z)· 
n=O \ (n + i) 

Dividing by the first term in the infinite product, and then using the 
recurrence formula [6, Equ. 6.1.15] and the reflection formula [6, Equ. 
6.1.17] whenever necessary, gives 

= rU + z + a2) r (1 - z + a/2} 

= 

= 

r2(i + 1) r(z - ~) 1 
------

/'(1 + ~ + z) l'(z - i) f'( 1 - (z - ~)) 

r2(~ + 1) r(z -I) Sin 'II'(Z - r) 
r( z + ~ + 1) 

'II' 
( 14) 

Multiplying and dividing by z - (a/2) on the right hand side of the last 
equation yields (13). (We note that above is given without proof by Taylor 
[1, Eq~. (29) ]. ) 

Rhodes defines the general Taylor pattern, Fa(z), for a> -1 to be 

( 15) 

where 

(16) 

and A is the same as given above (just after (6)). Note that for a = 0 the 
function Fo(z) is exactly Taylor's original function F(z). The analog of 
(8) for general a is 

14 
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n-1 
Fa(z) = TI 

n=1 

T (z) 
a 

(17) 

as is clear from (15) and (13). As z~oo, the rational function of degree 
n-1 in z2 in (17) approaches a constant and Ta(z) is asymptotic to a 
constant (depending only on a) times 1/lz11+a, The asymptotic decay rate of 
Fa(z) is therefore 6(1 + a) dB per octave. In addition, the asymptotic 
decay rate means that Fa(z) has a Fourier transform vanishing outside the 
aperture [-w, n] for every a > -1 and n > 1. 

For a> -1 define the 11Sampling functions 11 

(18) 

where 

l(-1)n(2n + a)(n + a)/n!, if a:/: 0 
cn(cx) = 1 , if a= 0, n = 0 

(-1)n2 , if a= 0, n = 1,2,3, ... 

Each G~a)(z) is an even function of z. These functions are essentially the 
Lagrange interpolating functions for the points {*(n + a/2); n = 0,1,2, ••• }. 
More precisely, the only nulls of G~'(z) are of the form ~(n + a/2) and, 
furthermore, 

G(a) (s(m + a)) ={1, ~f m = n 
n 2 0, 1f m :/: n. 

The functions G~a)(z) are derived using methods due originally to Paley 
and Wiener. 

(19) 

The open theoretical question mentioned earlier in this section concerns 
the completeness of the sampling functions (18) with respect to all(eyen 
aperture-limited functions. As stated already, it is known that Gna are 
complete for -1/2 < a < 1/2 and for a = 1. For(oTher values of a > - 1, nothing 
is known. Proceeding on the assumption that Gna are complete for all 

a> -1, it follows Fa(z) can be .expanded in the form 
00 

G(a)(z) 
n 

15 
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for some constants an. From (19) it follows that an= Fa(n + (a/2)) for 
all n. From (15) it follows that an = 0 for n 2 n. Therefore, 

n- 1 

Fa(z) = ~ Fa(n +I) G~a)(z) , 
n = 0 

which generalizes (9). 

(20) 

Denote by ga(P) the weighting function corresponding to Fa(z). As 
just stated, ga(P) vanishes outside the aperture [-w, w]. Question: Does 
ga(P) go to zero as the power a> -1 of distance from the aperture 
endpoints? Taylor [1] proves that any even function with this endpoint 
behavior has a Fourier transform whose nulls are asymptotic to =(n + (a/2)), 
but he does NOT prove the converse. Consequently, although ga(P) is even 
and has a Fourier transform with the proper null locations, this is not 
necessarily sufficient to answer the question in the affirmative. However, 
taking the term by term Fourier transform of (20) gives the expansion 

n- 1 

g(a) (p) = ~ F a(n + ~) H~a) (p) 
n = 0 

' 

where for n = 0, 1,2, ••• 

n 

H~a) (p) = (2 COS ~)a~ e (a) I I (-1)n-r r n-rcos(rp) p < w 
T (n-r)! ' 

r = 0 
0 

where eo = 1 and er = 2 for r > 0, and 

1 for all a, if k = 0 

!PI> w ) -

(a + 1) ••• (a + k - 1) for a 11 a , if k > 0. 

Since each of the functions H~a)(p) has the correct endpoint behavior, 

ga(p) must also have this same behavior. 

Just as in Taylor's original case, both the aperture function ga(P) 

( 21) 

( 22) 

and the beampattern function Fa(z) can be computed independently of each 
other using the analytically exact formulas (21) and (17), respectively, for 
any a > -1. Appropriate approximations near the points =(n + a/2) analogous 
to those developed in Appendix B for a= 0, are necessary for computing Fa(z) 
using (17). Developing these approximations should not present any 
mathematical difficulties. 

The three cases a= 0, 1, 2 are now given explicitly. Fortran programs 
implementing these three cases should be easy to write. The sampling 
functions are 

16 
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( 23) 

(24) 

2(n+1) 2 sin 1rZ 
2 2 • 

w z (z - (n+1) ) 
(25) 

and the corresponding aperture basis functions are 

H~ 0 ) ( p ) = .;rr cos np (26) 

H(1)(p) 
n = cos (n+~)p (27) 

H(2)(p) 
n = (-1)n +cos (n+1)p . (28) 

It should be noted that (23) and (26) are, within a scale factor, identical to 
(9) and (10), respectively. In all cases, th~ aperture function ga(P) is 
computed from (21). Consequently, the only potential difficulty is computing 
the constants Fa(n + a/2) for is n = 0, 1, ••• , n -1. Fortunately, for 
a = 0, 1, and 2, these constants are easy to compute using (17) since the 
following identities hold: 

T0(z) sin wz = wz 

T1(z) COS wz = 2 1 - 4z 

T2(z) sin ,..z = 2 wz (1-z ) . 
The price paid for the desired end effects is an increase in the 

beamwidth over the beamwidth of Taylor•s original weighting function. The 
beamwidth measured to the first null is, for all a > -1, 

BWNULL = 0a~ 
where Oa is given by (16) above. This gives exactly, for fixed n, 

BWNULL (for any a) a 

BWNULL (for a = 0) = a~ = 1 
+ ;n · 

( 29) 

(30) 

(31) 

This means that for n = 10, the beamwidth measured between nulls is 5% larger 
for a= 1 and 10 % larger for a= 2 than for Taylor•s original a= 0 
beampattern. It is anticipated that approximately the same percentage 
increases occur in the half-power beamwidths. 

17 
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A different modification to Taylor's nulls can be utilized to produce 
asymmetric beampatterns using complex valued aperture functions g(p). This is 
described in [8] for an application in radar to minimize ground clutter. The 
magnitude of the aperture function turns out to be an even function, while the 
phase of the aperture function turns out to be odd. 

V. CONCLUSIONS 

Taylor weighting can be modified to force the weighting function to go 
zero as any power a > -1 of distance from the aperture endpoints. Taylor's 
original weighting (a= O) results in a pedestal, while for a= 1 the 
weighting function goes to zero linearly as in a cosine window~and for a= 2 
the weighting function behaves like a cosine-squared window at the aperture 
endpoints. The endpoint effect is achieved for a modest increase in the 
mainlobe beamwidth. 

18 
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C O~PUTE TAYLOH • s CONT!~UOUS SriAD!NG FUHCTIO ~ A~D TRANSF~R F~NCTION 

T ~ P UT REOUIRE M E~ T: 1 .L~. N~AR 

: 71-!E SPATIAL f.PEPTURF: r,IE.::\ fR OM •PI TO tPl 
ARGC~E"T DEFI~ITIONS : 

x = abscissas for s3 mPlina the snajin~ function 
s = shadin g function valu~s 
~s = nu mber of s sa mples: none comPuted if ns = o 
k = aoscissas for samcltna tne transt~r tunct!on 
t = transfer function values 
n k = n u :n be r o t f s amp l e s ; n on e corn n u t e ri ! f n I< = I) 

nbar= the first nbar-1 zeros of f are tnose ot van der Maa s 
do = sidelobP. level in db of li mttlna nolph-Chenvshev array 
fm = coeffici~~ts ot the shading function cosine series 
h~3db = -3 dR beamwlrlth; not comouted if owjdb is 5et to -1. 

DIM~NSTU~ LI~lTS: 

x anri s must be di~ensioned at least max(ns,+l) 
k and t ~u5t be rlirenstoned at least m~x Cnk,+1) 

f ~ must be dimensioned at least nb~r 
'T'r:Ch\ll('"AL NOTES: 

NBAR =l GIVES TH~ U~IFORM SHAOING FUNCTIUN 
NbAR=l NFINITY GIVES QOLPH•CHEBYSHEV SriADi h ~ 

FIPST RE~ M PATTER N ~ULL = STG~A * 50H'T'(A**2+.25) 
'T'i1E CuSiNE ~f-RIES FOR S HAS Di::GRE£ t:XACTid ilBAR•1 

PROG~AV M ER: R. L. STPEIT, NUSC , D~CEMB~R 21, 1QB4. 
T.AST KEY'ISION: ,JAr.UARX' 11, 1985 

s ubrout ine taylorCx,s,ns,k,t,nk,nbar,db,~m,bw3db) 
double precision xC11,s(1),k(1),f(1),db,~mC1),xpt,a,siama,q,~i.q, 

zeroin,ao,bp,tol,ow3do 
data p1/3.1415925535R979d0/ 
a=lO. O riO**ao~Cdb/20.0n0) 
~=dlog(a+sart(a*~-l.Od"))/pi 

s1~ma=nbar/sqrt(a~a+Cnbar-.5dOl•(nbar•.5;0)) 

nbart=nbar-1 
tmCll=1.nao 
i±Cnhar.eq.1)go to 15 
no 10 t=2,!1t.ar 
xpt=i-1 
t 111 ( i ) = rt C x p t , a , n b a r 1 , s 1 q m a ) 

10 continue 
1~ itCns.le.O)go to 25 

do 20 i=l,ns 
s(i): O .O~O 

ifCabsCxC11).gt.Cpi+l.rl-7)) g o to 20 
s(t):g(x(i),tm,nb~r) 

20 continue 
25 irCnk.le.O)go to 35 

rio 30 i=1,nk 
f(!)=qCk(l),a,noarl,siama) 

30 continue 
35 it(bw3no.lt.O.OctO)qo to 40 

ap=O.OdO 
bp=sig~a*sartC~*a+.25d0) 

tol=1.0d·1~ 
hw3dh=2 . 0dO*zeroin(ap , bp , q,tol ,a,nbar1,sf gma) 

40 continue 
return 

douole precision function ~(z ,a,nbart,si ~m~) 
double creci~1on pi ,oiz,zn. z ,a,si g ma 
rlatd pi/3.1415q2~53SR979 d 0/ 

19 
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rio 10 k::O,no"3r1 
1tCabs(z-kJ.lt.1.0d-4)~o to ~ o 

10 continue 
a =1 . 0a0 
it(nharl.e a . OJao to 21 
do 2" n=l , no~r1 
zn = t z/s ioma) *~2/Ca* ~ +(n-.5 dOJ •*2) 
q:atC1. 0dO -zn)/(l.OdO•Cz/n)**2) 

21'l co!'lti nue 
21 niz=oi*z 

~=(sin(~iz)/nizl*q 

return 
30 it(k. ~ t.O)qo to 50 

c =t. OCl(l 
it(nbar1.eq.0)ao to 41 
do 40 n=l,nbarl 
zn=tz/~inma)*~?/Ca*a+(n -.5 ~0)**2) 

a=a*Cl.Ud0 ·znJ/Cl . OaO-(z/n)**2) 
40 continue 
41 ni?:=ni*z 

a::(l.Od0•piz*piZ*(l.Od~"~ -PiZ* P1Z/20 . d0)/6.0d0)*q 
return 

50 a=1.0o:O 
no oO n=t,nbar1 
1£Cn.ea.k)ao to 60 
zn=Cz/siamal**2/Ca*a+(n-. 510)**2l 
o=a*C1.0rlO - znJ/(1.0d0 - (z/nl**2) 

60 continue 
zn=Cz/siama)*'~<2/Ca*a+(k-.5dC)**2) 

q=a*Cl.OciO -zn) 
ciz=pi*(z-kJ 
a =Cl. Od0 - piz*p1z*(l.Od0-piz*n1z/20 . d0)/&.0d0)*q 
q:qf("ll**(k+l)*(K/(Z+Z*Z/k)) 
return 
enrl 
donble precision function g(p,fm,nbar) 
doubl e precision p,twoni,fm(1) 
dat a twopi/6.2931~53C7t7q58 647 7 d0/ 
a :: O. OdO 
if(nha r.eq.1) go to 20 
rlo 10 1=2,nbar 
q=c+fm(i)*cos((i - 1)*P) 

10 co~tinue 
20 a = Ctm (l)+g+g)/twopi 

return 
end 

c Co~pute a zero of a real function fin the interval rax, ox). 
c nouble precision version of Program on po. 164 -16 6 of "Computer 
c M etnod~ for Mathematic~ l Computations," ~Y G . ~ . Forsythe, 
c ~ . A . ~ alcolm, and C.B. Moler, Pr~ntice - rl3 ll, 1977, out sligntly 
c altered tor us~ ln co mn uting Taylor•s half- power oeamwidtn. 

double precision . function zeroinCax,bx,f,t~l,adum,nbarl,siq~a) 
doubl e precision ax,ox,f,tol,adum,siama 
~oubl e pr ecision a,b,c,d,e,ens,fa,fb,fc,tol1,xm,p,o,r,s 
et:s=t.nd0 

10 eps=ep s/2.nctn 

20 

toll=l.OdiJ+ePS 
1ftto l1 .at.l. Od0Jgo to 10 
a=.:~x 

b=nx 



•' 

ta=f(a , adum ,n barl,siam~)- . 5d0 

fo:f(b,adu~,noart,siama) -. ?dO 

20 c=a 
fc=ta 
d=tl-'3 
e=i 

30 1t(abs(fcJ.ge.~os(fo))qo to 40 
"3=b 

so 

60 

h=c 
c=a 
fd=tb 
fo=tc 
fc=t~ 

tol1=2.0dO*eos*abs(nl+.5dO*tol 
xm=.5d0*(c-ol 
if(abs(xm).le.toll)gn to 90 
tf(th .eq . O.OdO) go to 90 
ifCahs(e) .lt.toll) qo to 70 
if(abs(fa).le .abs(tol) ao to 70 
ifCa.ne.c)ao to 50 
s=fb/fa 
o = 2 • o d 0 * x rn * s 
q:l.OdO -s 
qo to 60 
a=fa/tc 
r=fb/fc 
s=fb/fa 
o=s*C2.0rlO*xm*a*(q-r)-(b-a)*(r-l.OdO)) 
q:Cq-l.OdOl*Cr-l.OdO)*Cs-1.0~0) 
if(p.gt.O.OdO)q::-q 
p=aos(o) 
if((2 . 0dO*p) . ge .CJ. OdO*xm*q-abs(toll*q))lgo to 70 
if(p . ge.abs(O . SdO*e*a))go to 70 
e=d 
rl=n/q 
ao to BO 

70 d=xm 
e=rl 

80 a=b 
fa=tb 
it(aos(d).at.tol1)b=b+rl 
it(abs(d).le.toll)h=b+sign(tol1,xm) 
tb=t(b,adum,nb~r1,siama)-.5d0 

ii((fb*Cfc/absCtc))) . gt . n . OdO)ao to ?0 
qo to '30 

90 zero1n=o 
return 
end 

T ~1 No. 851004 
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Appendix B. Calculation of F(z) 

For some small number £ > 0~ say £ = 10-4~ define 

sin 1TZ 
1r(z-k) :; 

s(z, k) = 2 4 

( -1)k [1 - f- (z-k) 2 + Tirr (z-k) 4 - ••• J ~ lz-kJ <£ . 

Now, if Jz-kJ >£fork= 0,1,2, ••• , n-1, compute F(z) exactly as in (8). If 
lz-kl ~ £ for k=O, then compute 

n-1 

F(z) = s(z,O} ~ 
n=1 

a 
2 

If Jz-kJ< £for k=1, ••• , n-1, then compute 

( -k) 1 - -a::::-2 -(A....,2:-+-1_( k---i;--:) 2:::-)) ~ 
F(z) = s(z,k) z I J 

z( 1 + k) n=1 
n:fk 

2 
1 - z 

2 2 1 2 
a (A + (n - "2") } 

z 
1 -:I 

n 

Use of these formulae eliminates all indeterminate 0/0 forms that arise during 
actual computation using (8). 
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